Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7703, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565937

RESUMO

Bioactive molecules in tick saliva are considered to be key to successful feeding and further the transmission of tick-borne pathogens. Problems such as pathogen transmission and animal weight loss result in tick infestation can cause tremendous economic losses to the livestock industry. Therefore, the development of a universal tick vaccine is urgently needed. In this paper, three serine protease inhibitor (serpin) proteins RMS-3, L7LRK7 and L7LTU1 were analyzed with bioinformatics methods. Subsequently the proteins were expressed and purified, and inoculated into Kunming mice for immune protection analysis. The amino acid sequence similarities between RMS-3, L7LRK7 and L7LTU1 were up to 90% in Rhipicephalus sanguineus. The recombinant RMS-3 + L7LRK7 + L7LTU1 showed anticoagulant reaction function and could inhibit the activity of CD4+ lymphocytes, when inoculated into Kunming mice. Additionally, After the immunized mice were challenged with Rhipicephalus sanguineus, the percentage of larvae and nymphs that were fully engorged dropped to 40.87% (P < 0.05) and 87.68% (P > 0.05) in the RmS-3 + L7LRK7 immune group, 49.57% (P < 0.01) and 52.06% (P < 0.05) in the RmS-3 + L7LTU1 group, and 45.22% (P < 0.05) and 60.28% (P < 0.05) in the RmS-3 + L7LRK7 + L7LTU1 immune group, in comparison with the control group. These data indicate that RmS-3 + L7LRK7 + L7LTU1 has good immune protection and has the potential to be developed into a vaccine against the larvae and nymphs of R. sanguineus.


Assuntos
Animais não Endogâmicos , Rhipicephalus sanguineus , Rhipicephalus , Vacinas , Camundongos , Animais , Inibidores de Serino Proteinase/metabolismo , Rhipicephalus/metabolismo , Ninfa , Larva
2.
Parasite ; 31: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315066

RESUMO

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Acaricidas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Resistência a Medicamentos/genética , Polimorfismo Genético , Aminoácidos/genética , Infestações por Carrapato/veterinária
3.
J Basic Microbiol ; 64(1): 94-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696778

RESUMO

The current study examined the impact of ultraviolet (UV)-B radiation in Metarhizium pingshaense blastospores' photolyase expression and their virulence against Rhipicephalus microplus. Blastospores were exposed to UV under laboratory and field conditions. Ticks were treated topically with fungal suspension and exposed to UV-B in the laboratory for three consecutive days. The expression of cyclobutane pyrimidine dimmers (CPDs)-photolyase gene maphr1-2 in blastospores after UV exposure followed by white light exposure was accessed after 0, 8, 12, 24, 36, and 48 h. Average relative germination of blastospores 24 h after in vitro UV exposure was 8.4% lower than 48 h. Despite this, the relative germination of blastospores exposed to UV in the field 18 h (95.7 ± 0.3%) and 28 h (97.3 ± 0.8%) after exposure were not different (p > 0.05). Ticks treated with fungus and not exposed to UV exhibited 0% survival 10 days after the treatment, while fungus-treated ticks exposed to UV exhibited 50 ± 11.2% survival. Expression levels of maphr1-2 8, 12, and 24 h after UV-B exposure were not different from time zero. Maphr1-2 expression peak in M. pingshaense blastospores occurred 36 h after UV-B exposure, in the proposed conditions and times analyzed, suggesting repair mechanisms other than CPD-mediated-photoreactivation might be leading blastospores' germination from 0 to 24 h.


Assuntos
Desoxirribodipirimidina Fotoliase , Metarhizium , Rhipicephalus , Animais , Rhipicephalus/metabolismo , Rhipicephalus/microbiologia , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Virulência , Luz , Raios Ultravioleta , Metarhizium/metabolismo , Controle Biológico de Vetores
4.
Ticks Tick Borne Dis ; 14(6): 102227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419001

RESUMO

Ticks and tick-borne diseases constitute a major threat for human and animal health worldwide. Vaccines for the control of tick infestations and transmitted pathogens still represents a challenge for science and health. Vaccines have evolved with antigens derived from inactivated pathogens to recombinant proteins and vaccinomics approaches. Recently, vaccines for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown the efficacy of new antigen delivery platforms. However, until now only two vaccines based on recombinant Bm86/Bm95 antigens have been registered and commercialized for the control of cattle-tick infestations. Nevertheless, recently new technologies and approaches are under consideration for vaccine development for the control of ticks and tick-borne pathogens. Genetic manipulation of tick commensal bacteria converted enemies into friends. Frankenbacteriosis was used to control tick pathogen infection. Based on these results, the way forward is to develop new paratransgenic interventions and vaccine delivery platforms for the control of tick-borne diseases.


Assuntos
COVID-19 , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Vacinas , Bovinos , Animais , Humanos , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , SARS-CoV-2/metabolismo , Vacinas/genética , Doenças Transmitidas por Carrapatos/prevenção & controle , Rhipicephalus/metabolismo , Antígenos , Doenças dos Bovinos/prevenção & controle
5.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(2): 163-170, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37253565

RESUMO

OBJECTIVE: To analyze the sequence characteristics of Rhipicephalus microplus Enolase gene, and to predict the secondary and tertiary structure and antigenic epitopes of the Enolase protein. METHODS: Sixty-two engorged female R. microplus were sampled from a yellow cattle breeding farm in Zhijiang County, Huaihua City, Hunan Province in June 25, 2022. Genomic DNA was isolated from R. microplus, and the Enolase gene was amplified using PCR assay, followed by cloning, sequencing and expression of the amplification product. The sequence characteristics of the Enolase gene were analyzed using the software Clustal X, and the gene sequence was translated into amino acid sequences. The secondary and tertiary structures of the Enolase protein were deduced using the software PRABI, and the physicochemical properties of the Enolase protein were analyzed using the software PRABI. In addition, the B- and T-cell epitopes of the Enolase protein were predicted using the software ABCpred Prediction, Scratch, IEDB and NetCTL. RESULTS: The R. microplus Enolase gene sequence was 1 323 bp in size, and the contents of A, T, G and C bases were 24.5%, 22.5%, 27.0% and 26.0%,with 47.0% of A + T content and 53.0% of G + C content. The R. microplus Enolase gene encoded 434 amino acids, and the Enolase protein had a molecular weight of 47.12 kDa. The secondary structure of the Enolase protein contained 186 α-helixes (42.86%), 32 ß-turns (7.37%), 144 random coils (33.18%) and 72 extended strands (16.59%). The Enolase protein was most probably present in cytoplasm (76.7%), followed by in mitochondrion (39.1%) and nucleus (21.7%), and the Enolase protein had no signal peptide or transmembrane domain. In addition, the Enolase protein had 14 B-cell dominant epitopes and 8 T-cell dominant epitopes. CONCLUSIONS: The R. microplus Enolase gene sequence exhibits a GC preference, and its encoding Enolase protein is an acidic and hydrophilic protein, with α-helixes and random coils as its primary structure, and presenting B- and T-cell dominant epitopes, which is a potential target for development of vaccines against R. microplus.


Assuntos
Fosfopiruvato Hidratase , Rhipicephalus , Feminino , Animais , Bovinos , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Sequência de Aminoácidos , Epitopos de Linfócito T
6.
J Proteomics ; 280: 104892, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997062

RESUMO

Controlling Rhipicephalus microplus is among the most significant challenges for livestock production worldwide. The indiscriminate use of acaricides stimulates the selection of resistant tick populations and is therefore ineffective. Understanding the molecular foundations of resistance could help inform the search for new alternatives for tick control. Although the ovary has been suggested as a relevant target organ for tick control, there are few existing studies that focus on tick ovarian tissue. Therefore, we conducted a comparative proteomic analysis on ovaries of R. microplus strains with differential resistance to ivermectin. In resistant ticks, we observed the over-accumulation of proteins involved in several biological processes, including translation, proteolysis, transport, cellular organization, differentiation, and xenobiotic detoxification. We also observed the accumulation of many structural and extracellular proteins such as papilin-like protein, which glycosylation increase its stability-based molecular modeling. Therefore, we propose that ovaries of ivermectin-resistant ticks overcome the negative impact of ivermectin through the activation of detoxification mechanisms and structural proteins associated with the remodeling of the ovary's extracellular matrix. SIGNIFICANCE: Understanding the molecular foundation of ivermectin resistance in Rhipicephalus microplus represents an essential step in cattle farming, which could provide clues and alternatives for tick control. Excessive use of chemicals like ivermectin allows the generation of resistant tick strains in different countries. However, limited molecular information is available concerning the tick's resistance to ivermectin. Detailed proteomics scrutiny in various tick organs will provide more comprehensive molecular information. Thus, we conducted an ovary comparative proteomic-based TMT-SPS-MS3 approach. We highlight in ivermectin-resistant ticks the over-accumulation of structural proteins and enzymes connected to detoxification mechanisms.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Feminino , Animais , Bovinos , Ivermectina/metabolismo , Ivermectina/farmacologia , Ovário , Rhipicephalus/metabolismo , Proteômica , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Infestações por Carrapato/veterinária
7.
Parasit Vectors ; 16(1): 16, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650585

RESUMO

BACKGROUND: Babesia bovis, an intra-erythrocytic apicomplexan parasite, is one of the causative agents of bovine babesiosis, the most important tick-borne disease of cattle in tropical and subtropical regions. Babesia bovis has a complex life-cycle that includes sexual development within the tick vector. The development of a transmission blocking vaccine to control bovine babesiosis requires the identification of antigens displayed on the surface of the parasite during its development within tick vectors. Four B. bovis cysteine-rich GCC2/GCC3 domain protein (BboGDP) family members were previously identified and are differentially expressed as discrete pairs by either blood stages or kinetes. In this study we focused on two family members, BboGDP1 and -3, that are expressed by Babesia parasites during tick infection. METHODS AND RESULTS: Transcription analysis using quantitative PCR demonstrated that BboGDP1 and -3 were upregulated in in vitro-induced sexual stage parasites and during parasite development in the tick midgut. Moreover, protein expression analysis of BboGDP1 and -3 during the development of sexual stages in in vitro culture was consistent with their transcription profile. Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of BboGDP1 and -3 on in vitro-induced sexual stage parasites. In addition, fixed immunofluorescence analysis showed reactivity of anti-BboGDP1 and -3 polyclonal antibodies to kinetes. CONCLUSIONS: The collective data indicate that BboGDP1 and -3 are expressed by kinetes and on the surface of sexual stages of the parasites. The identified parasite surface membrane proteins BboGDP1 and -3 are potential candidates for the development of a B. bovis transmission blocking vaccine.


Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Rhipicephalus , Vacinas , Animais , Bovinos , Rhipicephalus/metabolismo , Babesiose/parasitologia , Cisteína/metabolismo , Vacinas/metabolismo , Proteínas de Membrana/metabolismo , Doenças dos Bovinos/parasitologia
8.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361566

RESUMO

Rhipicephalus (Boophilus) microplus is one of the most widespread ticks causing a massive loss to livestock production. The long-term use of acaracides rapidly develops acaracide resistance. In R. microplus, enhancing the metabolic activity of glutathione S-transferase (RmGST) is one of the mechanisms underlying acaracide resistance. RmGST catalyzes the conjugation of glutathione (GSH) to insecticides causing an easy-to-excrete conjugate. The active RmGST dimer contains two active sites (hydrophobic co-substrate binding site (H-site) and GSH binding site (G-site)) in each monomer. To preserve the insecticide efficacy, s-hexyl glutathione (GTX), a GST inhibitor, has been used as a synergist. To date, no molecular information on the RmGST-GSH/GTX complex is available. The insight is important for developing a novel RmGST inhibitor. Therefore, in this work, molecular dynamics simulations (MD) were performed to explore the binding of GTX and GSH to RmGST. GSH binds tighter and sits rigidly inside the G-site, while flexible GTX occupies both active sites. In GSH, the backbone mainly interacts with W8, R43, W46, K50, N59, L60, Q72, and S73, while its thiol group directs to Y7. In contrast, the aliphatic hexyl of GTX protrudes into the H-site and allows a flexible peptide core to form various interactions. Such high GTX flexibility and the protrusion of its hexyl moiety to the H-site suggest the dual role of GTX in preventing the conjugation reaction and the binding of acaracide. This insight can provide a better understanding of an important insecticide-resistance mechanism, which may in turn facilitate the development of novel approaches to tick control.


Assuntos
Acaricidas , Inseticidas , Rhipicephalus , Animais , Rhipicephalus/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/farmacologia , Resistência a Inseticidas , Acaricidas/farmacologia , Glutationa/metabolismo
9.
J Biol Chem ; 298(10): 102382, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973511

RESUMO

Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the "body" of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.


Assuntos
Proteínas de Artrópodes , Quimiocinas , Receptores CXCR , Rhipicephalus , Proteínas e Peptídeos Salivares , Animais , Proteínas de Artrópodes/metabolismo , Quimiocinas/metabolismo , Ligação Proteica , Receptores CXCR/metabolismo , Rhipicephalus/metabolismo , Transdução de Sinais , Proteínas e Peptídeos Salivares/metabolismo
10.
J Proteomics ; 263: 104618, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598868

RESUMO

Rhipicephalus microplus is the most serious tick parasite for the livestock industry in tropical and subtropical regions. A cost-effective control method to manage the infestation of this parasite involves the use of chemicals such as ivermectin. However, massive overuse of ivermectin over recent decades has selected for ivermectin-resistant populations of R. microplus. Here, we carried out a comparative proteomic analysis of the midgut of ivermectin-susceptible versus ivermectin-resistant ticks using tandem mass tags coupled to synchronous precursor selection. In susceptible ticks, there was an over-representation of proteins associated with blood digestion and anticoagulation. In contrast, resistant ticks exhibited an over-accumulation of proteins involved in phase I and phase II of the detoxification metabolism, including cytochrome P450, glutathione-S-transferase, and ABC transporters, as well as many ribosomal and other translation-related proteins. This information provides new clues about the mechanisms of ivermectin resistance in R. microplus as well as suggesting potential novel molecular targets to cope with ivermectin-resistant populations of R. microplus. SIGNIFICANCE: Cattle farming is an important primary economic activity for food production all over the globe. However, this activity also has detrimental environmental impacts, including the overuse of ivermectin and other chemicals used to control parasite infestations. The overuse of ivermectin selected for parasites with resistance to this chemical, including tick species like R. microplus. There has been extensive to understand the mechanisms that mediate ivermectin resistance in arthropods, but many gaps remain for the full comprehension of this phenomenon. Understanding the biochemistry behind ivermectin resistance could provide new alternatives to fight these parasites. We therefore consider that determining the metabolic mechanisms involved in ivermectin resistance is of great relevance. The comparative proteomic analysis here reported shows the relevance of the active detoxifying metabolism in the midgut of resistant ticks, which may be key for the development of novel control methods.


Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Glutationa Transferase/metabolismo , Ivermectina/farmacologia , Proteoma/metabolismo , Proteômica , Rhipicephalus/metabolismo
11.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121230

RESUMO

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Assuntos
Ixodidae , Neuropeptídeos , Rhipicephalus , Animais , Feminino , Ixodidae/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
12.
J Biol Chem ; 298(3): 101599, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063504

RESUMO

Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.


Assuntos
Glucose , Rhipicephalus , Animais , Linhagem Celular , Gluconeogênese , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADP/metabolismo , Oxirredução , Rhipicephalus/metabolismo
13.
Parasit Vectors ; 14(1): 612, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930413

RESUMO

BACKGROUND: It is well established that ecdysteroid hormones play an important role in arthropod development and reproduction, mediated by ecdysteroid receptors. Ticks are obligate hematophagous arthropods and vectors of pathogens. The salivary gland plays an essential role in tick growth and reproduction and in the transmission of pathogens to vertebrate hosts. During tick development, the salivary gland undergoes degeneration triggered by ecdysteroid hormones and activated by apoptosis. However, it is unknown how the ecdysteroid receptor and apoptosis regulate salivary gland degeneration. Here, we report the functional ecdysteroid receptor (a heterodimer of the ecdysone receptor [EcR] and ultraspiracle [USP]) isolated from the salivary gland of the tick Rhipicephalus haemaphysaloides and explore the molecular mechanism of ecdysteroid receptor regulation of salivary gland degeneration. METHODS: The full length of RhEcR and RhUSP open reading frames (ORFs) was obtained from the transcriptome. The RhEcR and RhUSP proteins were expressed in a bacterial heterologous system, Escherichia coli. Polyclonal antibodies were produced against synthetic peptides and were able to recognize recombinant and native proteins. Quantitative real-time PCR and western blot were used to detect the distribution of RhEcR, RhUSP, and RhCaspases in the R. haemaphysaloides organs. A proteomics approach was used to analyze the expression profiles of the ecdysteroid receptors, RhCaspases, and other proteins. To analyze the function of the ecdysteroid receptor, RNA interference (RNAi) was used to silence the genes in adult female ticks. Finally, the interaction of RhEcR and RhUSP was identified by heterologous co-expression assays in HEK293T cells. RESULTS: We identified the functional ecdysone receptor (RhEcR/RhUSP) of 20-hydroxyecdysone from the salivary gland of the tick R. haemaphysaloides. The RhEcR and RhUSP genes have three and two isoforms, respectively, and belong to a nuclear receptor family but with variable N-terminal A/B domains. The RhEcR gene silencing inhibited blood-feeding, blocked engorgement, and restrained salivary gland degeneration, showing the biological role of the RhEcR gene in ticks. In the ecdysteroid signaling pathway, RhEcR silencing inhibited salivary gland degeneration by suppressing caspase-dependent apoptosis. The heterologous expression in mammalian HEK293T cells showed that RhEcR1 interacts with RhUSP1 and induces caspase-dependent apoptosis. CONCLUSIONS: These data show that RhEcR has an essential role in tick physiology and represents a putative target for the control of ticks and tick-borne diseases.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores de Esteroides/metabolismo , Rhipicephalus/metabolismo , Glândulas Salivares/fisiologia , Animais , Clonagem Molecular , Comportamento Alimentar , Feminino , Células HEK293 , Humanos , Fases de Leitura Aberta , Interferência de RNA , RNA de Cadeia Dupla , Receptores de Esteroides/genética
14.
Parasit Vectors ; 14(1): 386, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348769

RESUMO

BACKGROUND: The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands. METHODS: Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax. RESULTS: The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain. CONCLUSIONS: This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions.


Assuntos
Proteínas Proto-Oncogênicas/isolamento & purificação , Rhipicephalus/metabolismo , Proteína X Associada a bcl-2/isolamento & purificação , Animais , Apoptose , Feminino , Marcação In Situ das Extremidades Cortadas , Camundongos , Proteínas Proto-Oncogênicas/fisiologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Proteína X Associada a bcl-2/fisiologia
15.
PLoS Negl Trop Dis ; 15(1): e0009074, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513141

RESUMO

Female tick salivary glands undergo rapid degeneration several days post engorgement. This degeneration may be caused by the increased concentration of ecdysone in the hemolymph during the fast feeding period and both autophagy and apoptosis occur. In this work, we first proved autophagy-related gene (ATG) and caspase gene expression peaks during degeneration of the tick salivary glands. We explored the regulatory role of Rhipicephalus haemaphysaloides autophagy-related 5 (RhATG5) in the degeneration of tick salivary glands. During the fast feeding phase, RhATG5 was cleaved and both calcium concentration and the transcription of Rhcalpains increased in the salivary glands. Recombinant RhATG5 was cleaved by µ-calpain only in the presence of calcium; the mutant RhATG5191-199Δ was not cleaved. Treatment with 20-hydroxyecdysone (20E) led to programmed cell death in the salivary glands of unfed ticks in vitro, RhATG8-phosphatidylethanolamine (PE) was upregulated in ticks treated with low concentration of 20E. Conversely, RhATG8-PE decreased and Rhcaspase-7 increased in ticks treated with a high concentration of 20E and transformed autophagy to apoptosis. High concentrations of 20E led to the cleavage of RhATG5. Calcium concentration and expression of Rhcalpains were also upregulated in the tick salivary glands. RNA interference (RNAi) of RhATG5 in vitro inhibited both autophagy and apoptosis of the tick salivary glands. RNAi of RhATG5 in vivo significantly inhibited the normal feeding process. These results demonstrated that high concentrations of 20E led to the cleavage of RhATG5 by increasing the concentration of calcium and stimulated the transition from autophagy to apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Glândulas Salivares/metabolismo , Carrapatos/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Caspases/genética , Modelos Animais de Doenças , Ecdisterona/farmacologia , Feminino , Perfilação da Expressão Gênica , Hemolinfa/metabolismo , Masculino , Interferência de RNA , Coelhos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Glândulas Salivares/patologia , Regulação para Cima
16.
Sci Rep ; 11(1): 1642, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452281

RESUMO

Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host inflammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clotting inhibitors and immune-modulators orthologous to the ancestral tick lineages were confirmed in the transcriptome and their differential expression during feeding in both genders observed. This transcriptome contributes data of importance to salivary gland biology and blood feeding physiology of non-model organisms.


Assuntos
Rhipicephalus/metabolismo , Glândulas Salivares/metabolismo , Transcriptoma , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Fases de Leitura Aberta/genética , Análise de Componente Principal , RNA/análise , RNA/metabolismo , Rhipicephalus/genética , Análise de Sequência de RNA
17.
Parasitol Int ; 81: 102274, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33352319

RESUMO

Ticks have developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet and environment. Different classes of enzymes are involved in these processes, however, the role of several of them is not yet characterized in Rhipicephalus microplus. In this context, this work investigated the action of antioxidant and detoxification enzymes, as well as the levels of essential cellular reductants in R. microplus partially engorged females (PEF) and fully engorged females (FEF). Results demonstrated that enzymes transcriptional levels and enzymatic activity from ovary and fat body were higher in PEF than in FEF, except for ovary Glutathione peroxidase (GPx), which was the only enzyme showing highest activity in the FEF stage. These results indicated a higher demand for antioxidant potential in these organs at the initial feeding phase than during egg-laying. In midgut, however, there was more variability in the transcriptional levels and activity of the different enzymes between the PEF and FEF phases. Similar NADPH levels were found in PEF and FEF phases, suggesting a remarkable capacity to maintain a regular supply of reducing power, despite the developmental changes and large intake of heme and iron. However, reduced glutathione (GSH) levels were variable between PEF and FEF when distinct organs were compared. Taken together, our data suggest a higher demand for reducing potential in FEF ticks. The silencing of catalase (CAT) or thioredoxin reductase (TRx) genes in females did not impair feeding, egg-laying capacity, or larvae hatching. CAT-silenced ticks had increased ovary peroxidase activity, a possible compensatory antioxidant mechanism. Altogether, the results shed light on the complexity of the antioxidant and detoxification enzyme system in ticks and its involvement in different physiological mechanisms.


Assuntos
Antioxidantes/metabolismo , Proteínas de Artrópodes/metabolismo , Rhipicephalus/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Rhipicephalus/enzimologia
18.
Biomolecules ; 10(4)2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260542

RESUMO

Ticks are obligate hematophagous arthropods and vectors of pathogens affecting human and animal health worldwide. Cement is a complex protein polymerization substance secreted by ticks with antimicrobial properties and a possible role in host attachment, sealing the feeding lesion, facilitating feeding and pathogen transmission, and protection from host immune and inflammatory responses. The biochemical properties of tick cement during feeding have not been fully characterized. In this study, we characterized the proteome of Rhipicephalus microplus salivary glands (sialome) and cement (cementome) together with their physicochemical properties at different adult female parasitic stages. The results showed the combination of tick and host derived proteins and other biomolecules such as α-Gal in cement composition, which varied during the feeding process. We propose that these compounds may synergize in cement formation, solidification and maintenance to facilitate attachment, feeding, interference with host immune response and detachment. These results advanced our knowledge of the complex tick cement composition and suggested that tick and host derived compounds modulate cement properties throughout tick feeding.


Assuntos
Interações Hospedeiro-Patógeno , Proteômica , Rhipicephalus/metabolismo , Animais , Bovinos , Rhipicephalus/fisiologia , Glândulas Salivares/metabolismo
19.
Ticks Tick Borne Dis ; 11(3): 101374, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008997

RESUMO

Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical regions around the world with great impact on livestock production. R. microplus can also harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise cattle production. Blood meal acquisition and digestion are key steps for tick development. In ticks, digestion takes place inside midgut cells and is mediated by aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins are a family of cysteine peptidases inhibitors found in several organisms and have been associated in ticks with blood acquisition, blood digestion, modulation of host immune response and tick immunity. In this work, we characterized a novel R. microplus type 1 cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly expressed in the midgut of partially and fully engorged females and they appear to be modulated at different days post-detachment. Purified recombinant Rmcystatin-1b displayed inhibitory activity towards typical cysteine peptidases with high affinity. Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood digestion in R. microplus midgut.


Assuntos
Proteínas de Artrópodes/genética , Cisteína Proteases/genética , Regulação da Expressão Gênica , Rhipicephalus/genética , Cistatinas Salivares/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cisteína Proteases/metabolismo , Feminino , Filogenia , Rhipicephalus/metabolismo , Cistatinas Salivares/química , Cistatinas Salivares/metabolismo , Alinhamento de Sequência
20.
Ticks Tick Borne Dis ; 11(3): 101378, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31982372

RESUMO

Rhipicephalus appendiculatus, the brown ear tick, is an important disease vector of livestock in eastern, central and southern Africa. Rhipicephalus appendiculatus acaricide resistance requires the search for alternative methods for its control. Cystatins constitute a superfamily of cysteine peptidase inhibitors vital for tick blood feeding and development. These inhibitors were proposed as antigens in anti-tick vaccines. In this work, we applied structural and biochemical approaches to characterize a new cystatin named R. appendiculatus cystatin 2a (Racys2a). Structural modeling showed that this new protein possesses characteristic type 2 cystatin motifs, besides conservation of other structural patterns along the protein. Peptidase inhibitory assays with recombinant Racys2a showed modulation of tick and host cathepsins involved in blood digestion and immune system responses, respectively. A heterologous tick challenge with R. appendiculatus in rabbits immunized with recombinant Rhipicephalus microplus cystatin 2c (rBmcys2c) was performed to determine cross-reactivity. Histological staining showed that rBmcys2c vaccination caused damage to the gut, salivary gland and ovary tissues in R. appendiculatus. Furthermore, cystatin vaccine reduced the number of fully engorged adult females in 11.5 %. Consequently, strategies to increase the protection rate are necessary, including the selection of two or more antigens to compose a vaccine cocktail.


Assuntos
Proteínas de Artrópodes/genética , Rhipicephalus/genética , Cistatinas Salivares/genética , Vacinas/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Feminino , Filogenia , Coelhos , Rhipicephalus/metabolismo , Cistatinas Salivares/química , Cistatinas Salivares/metabolismo , Alinhamento de Sequência , Vacinas/química , Vacinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...